Abstract
Within the concept of projective lattice geometry we are considering the class of stable geometries which have also been introduced in [14]. The investigation of their basic properties will result in fundamental structure theorems which especially give a lattice-geometric characterization of free left modules of rank ≥6 over proper right Bezout rings of stable rank 2. This yields a proper generalization of previous results of ours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.