Abstract
The fundamental theorem of projective geometry gives an algebraic representation of isomorphisms between projective geometries of dimension at least 3 over vector spaces and has been generalized in different ways. This note briefly presents some further generalizations which will be proved in the author’s thesis. We introduce the notion of global-affine morphisms between projective lattice geometries. Our investigations result in a general partial representation of global-affine morphisms which yields a complete representation of global-affine homomorphisms between large classes of module-induced projective geometries by semilinear mappings between the underlying modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.