Abstract
One way in which nonlinear descriptor systems of (index-k) naturally arise is through semiexplicit differential-algebraic equations. The study considers the nonbilinear dynamical systems which are described by the class of higher-index differential-algebraic equations (DAEs). Their nature is analysed both quantitatively and qualitatively, and stability characteristics are presented for their solution. Higher-index differential-algebraic systems seem to show inherent shaky around their solution manifolds. The often use of logarithmic norms is for the estimation of stability and perturbation bounds in linear ordinary differential equations (ODEs). The question of how to apply the notation of logarithmic norms to nonlinear DAEs has long been an open question. Other problem extensions including nonlinear dynamics and nonbilinear DAEs need subtle modification of the logarithmic norms. The logarithmic norm is combined by conceptual focus with the finite-time stability criterion in order to treat nonbilinear DAEs with the aim of covering some unbounded operators. This means we obtain the perturbation bounds from differential inequalities for a norm by the use of the relationship between Dini derivatives and semi-inner products. A numerical result obtained when tested on the nonbilinear mechanical system with a larger scale showed that the method was highly efficient and accurate and particularly suitable for nonbilinear DAEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.