Abstract

This paper studies the stability and control of fractional neural networks by Halanay inequality technique. Based on the fractional comparison principle and supremum and infimum principle, a novel fractional non-autonomous Halanay inequality is developed. The fractional non-autonomous Halanay inequality is in a form of integral, which considers the global nature of the system parameters and reduces estimation error. By combining the Halanay inequality with a maximum auxiliary function, an asymptotically stable discriminant condition for fractional Hopfield time-delay neural networks is established in an algebraic form. Moreover, event trigger control for fractional neural networks is studied. Low network bandwidth costs and high control efficiency are guaranteed by a Mittag-Leffler type event-triggered mechanism. Then, a discriminant condition on the event trigger control for fractional neural networks is established. The advantages of the proposed methods are demonstrated by three numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call