Abstract

A neural network (NN) control technique for robot manipulators is introduced in this paper. The fundamental robot control technique is the model-based computed-torque control which is subjected to performance degradation due to model uncertainty. NN controllers have been traditionally used to generate a compensating joint torque to account for the effects of the uncertainties. The proposed NN control approach is conceptually different in that it is aimed at prefiltering the desired joint trajectories before they are used to command the computed-torque-controlled robot system (the plant) to counteract performance degradation due to plant uncertainties. In this framework, the NN controller serves as the inverse model of the plant, which can be trained online using joint tracking error. Several variations of this basic technique are introduced. Backpropagation training algorithms for the NN controller have been developed. Simulation results have demonstrated the excellent tracking performance of the proposed control technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.