Abstract
The nonlinear problem of the Watt regulator dynamics is investigated. It is assumed to be installed on a machine that performs the specific harmonic oscillations of small amplitude along the vertical. Viscous friction forces is believed to arise in the hinges of the regulator, and these forces are small. In the main operating mode of the regulator, its rods, carrying massive weights, are deflected from the downward vertical by a constant acute angle. If friction and vertical oscillations of the machine are neglected, then we obtain an approximate problem in which the dynamics of the regulator is described by an autonomous Hamiltonian system with one degree of freedom. On the phase portrait of the approximate problem, the operating mode corresponds to a singular point of the center type. The trajectories surrounding this point lie inside the separatrix, which is a homoclinic doubly asymptotic trajectory that passes through the equilibrium position corresponding to the vertical position of the rods with weights. In the phase portrait, this position corresponds to a saddle singular point. The Melnikov method is used to obtain the splitting condition for the unperturbed separatrix in the complete perturbed problem, taking into account dissipation in the hinges and vertical vibrations of the machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.