Abstract

Since the mid-2000s, mobile/embedded computing systems conventionally have limited computing power, Random Access Memory (RAM) space, and storage capacity due to the consideration of their cost, energy consumption, and physical size. Recently, some of these systems, such as mobile phone and embedded consumer electronics, have more powerful computing capability, so they manage their data in small flash storage devices (e.g., Embedded Multi Media Card (eMMC) and Secure Digital (SD) cards) with a simple file system. However, the existing file systems usually have low space utilization for managing small files and the tail data of large files. In this work, we thus propose a dynamic tail packing scheme to enhance the space utilization of file systems over flash storage devices in embedded computing systems by dynamically aggregating/packing the tail data of (small) files together. To evaluate the benefits and overheads of the proposed scheme, we theoretically formulate analysis equations for obtaining the best settings in the dynamic tail packing scheme. Additionally, the proposed scheme was implemented in the file system of Linux operating systems to evaluate its capability. The results demonstrate that the proposed scheme could significantly improve the space utilization of existing file systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call