Abstract
Some properties, connected with recent generalizations of the classic notion of Lipschitz continuity for multifunctions, are investigated with reference to variational systems, that is to solution maps associated to parametrized generalized equations. The latter ones are a convenient framework to address several questions, mainly related to the stability and sensitivity analysis, arising in mathematical programming, optimal control, equilibrium and variational inequality theory. Global and local criteria for metric regularity and Lipschitz-likeness of variational systems are obtained. Some applications to the exact penalization of mathematical programs with equilibrium constraints and to the Lipschitzian stability of fixed points for multivalued contractions are then considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.