Abstract
We study a family of complex representations of the group GL n (𝔬), where 𝔬 is the ring of integers of a non-archimedean local field F. These representations occur in the restriction of the Grassmann representation of GL n (F) to its maximal compact subgroup GL n (𝔬). We compute explicitly the transition matrix between a geometric basis of the Hecke algebra associated with the representation and an algebraic basis that consists of its minimal idempotents. The transition matrix involves combinatorial invariants of lattices of submodules of finite 𝔬-modules. The idempotents are p-adic analogs of the multivariable Jacobi polynomials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have