Abstract
Split cuts form a well-known class of valid inequalities for mixed-integer programming problems (MIP). Cook et al. (1990) showed that the split closure of a rational polyhedron P is again a polyhedron. In this paper, we extend this result from a single rational polyhedron to the union of a finite number of rational polyhedra. We also show how this result can be used to prove that some generalizations of split cuts, namely cross cuts, also yield closures that are rational polyhedra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have