Abstract

In this paper, we deal with the differential properties of the scalar flux ϕ ( x ) defined over a two-dimensional bounded convex domain, as a solution to the integral radiation transfer equation. Estimates for the derivatives of ϕ ( x ) near the boundary of the domain are given based on Vainikko’s regularity theorem. The optimal pointwise error estimates in terms of the scalar flux are presented for the two classic finite difference methods: diamond difference (DD) and step difference (SD). Numerical results indicate the implication of the solution smoothness on the numerical convergence behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.