Abstract
This paper presents some constrained C0 finite element approximation methods for the biharmonic problem, which include the C0 symmetric interior penalty method, the C0 nonsymmetric interior penalty method, and the C0 nonsymmetric superpenalty method. In the finite element spaces, the C1 continuity across the interelement boundaries is obtained weakly by the constrained condition. For the C0 symmetric interior penalty method, the optimal error estimates in the broken H2 norm and in the L2 norm are derived. However, for the C0 nonsymmetric interior penalty method, the error estimate in the broken H2 norm is optimal and the error estimate in the L2 norm is suboptimal because of the lack of adjoint consistency. To obtain the optimal L2 error estimate, the C0 nonsymmetric superpenalty method is introduced and the optimal L2 error estimate is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.