Abstract

Abstract Coronal jets are transitory small-scale eruptions that are omnipresent in solar observations. Active regions jets produce significant perturbations on the ambient solar atmosphere and are believed to be generated by microflare reconnection. Multiple sets of recurrent jets are identified in extreme-ultraviolet filter imaging. In this work we analyze the long timescale recurrence of coronal jets originating from a unique footpoint structure observed in the lower corona. We report the detection of penumbral magnetic structures in the lower corona. These structures, which we call “coronal geysers,” persist through multiple reconnection events that trigger recurrent jets in a quasi-periodical trend. Recurrent jet eruptions have been associated with Type-III radio bursts that are manifestations of traveling non-thermal electron beams. We examine the assumed link, as the coronal sources of interplanetary Type-III bursts are still open for debate. We scrutinized the hypothesized association by temporally correlating a statistically significant sample of six Geyser structures that released at least 50 recurrent jets, with correspondent Type-III radio bursts detected in the interplanetary medium. Data analysis of these phenomena provides new information on small-scale reconnection, non-thermal electron beam acceleration, and energy release. We find that the penumbral Geyser-like flaring structures produce recurring jets. They can be long-lived, quasi-stable, and act as coronal sources for Type-III bursts, and, implicitly, upward accelerated electron beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call