Abstract

In recent years, the rapid detection of chloramphenicol (CAP) has become a market demand due to its high toxicity. In this study, for the first time, a portable surface-enhanced Raman scattering (SERS) aptasensor for the rapid and on-site detection of chloramphenicol (CAP) residues in fish was developed. Fe3O4@Au nanoflowers combined with sulfhydryl (SH)-CAP aptamer complementary DNA acted as capture probes. SH-CAP aptamer modified Au@Ag nanoparticles (Au@Ag NPs) embedded with 4-mercaptobenzoic acid (4-MBA) were served as reporter probes. The strongest Raman intensity was produced due to the coupling of Fe3O4@Au nanoflowers (Fe3O4@Au NFs) and Au@Ag NPs. For CAP detection, a wide linear range from 0.001 to 1000 μg/L, with an R2 of 0.9805, was obtained. The limit of detection was determined to be 0.87 ng/L. The SERS aptasensor showed excellent performance for analytical applications for real fish samples. Compared with the conventional HPLC method, the developed SERS aptasensor coupled with a handheld Raman spectrometer had flexible application and avoided the limitations of complex operating conditions. It should be a promising portable analytical tool for analysis of drug residues in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call