Abstract

Surface enhanced Raman scattering (SERS) detection using a handheld Raman spectrometer and a bench-top Raman spectrometer was systemically evaluated and compared in this study. Silver dendrites were used as the SERS substrate, and two pesticides, maneb and pyrrolidine dithiocarbamate-ammonium salt (PDCA) were used as the analytes. Capacity and performance were evaluated based on spectral resolution, signal variation, quantitative capacity, sensitivity, flexibility and intelligence for SERS detection. The results showed that the handheld Raman spectrometer had better data consistency, more accurate quantification capacity, as well as the capacity of on-site and intelligence for qualitative and semi-quantitative analysis. On the other hand, the bench-top Raman spectrometer showed about 10 times higher sensitivity, as well as flexibility for optimization of the SERS measurements under different parameters such as laser power output, collective time, and objective magnification. The study on the optimization of SERS measurements on a bench-top spectrometer provides a useful guide for designing a handheld Raman spectrometer, specifically for SERS detection. This evaluation can advance the application of a handheld Raman spectrometer for the on-site measurement of trace amounts of pesticides or other chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call