Abstract

We investigate simpliciality of function spaces without constants. We prove, in particular, that several properties characterizing simpliciality in the classical case differ in this new setting. We also show that it may happen that a given point is not represented by any measure pseudosupported by the Choquet boundary, illustrating so limits of possible generalizations of the representation theorem. Moreover, we address the abstract Dirichlet problem in the new setting and establish some common points and nontrivial differences with the classical case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.