Abstract

Convective heat transfer coefficient is closely related with flow and thermal conditions. To define heat transfer coefficient, a reference temperature needs to be properly selected, which can be the fluid bulk mean temperature for internal flows or the temperature at the far field for external flows. For complicated flows, the adiabatic wall temperature is commonly adopted as the reference temperature, while other options can also be applied. This paper analyzed some of the potential selections of the reference temperature for different flow settings, including film cooling, jet impingement with cross flows, and a mixing flow in a straight duct with or without internal heat source. It is observed that heat transfer coefficient changes dramatically with selection of reference temperatures. In case of constant wall temperature, using adiabatic wall temperature as reference temperature can result in negative heat transfer coefficient, which means the heat flux has a different direction with the defined driving temperature difference. To avoid the inconsistency due to the reference temperature, an innovative method is proposed to calculate the heat transfer coefficient of complicated flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call