Abstract

The present study considers spatially-resolved surface heat transfer coefficients and adiabatic wall temperatures on a turbine blade tip in a linear cascade under transonic conditions. Six different measurement and processing techniques are considered and compared, including transient infrared thermography and thin-film heat flux gauges. Three methods use the same experimental setup, using a heater mesh to provide a near-instantaneous step-change in mainstream temperature, employing an infrared camera to measure surface temperature. The three methods use the same data but different processing techniques to determine the heat transfer coefficients and adiabatic wall temperatures. Two methods use different processing techniques to reconstruct heat flux from the temperature time trace measured. A plot of the heat flux versus temperature is used to determine the heat transfer coefficients and adiabatic wall temperatures. The third uses the classical solution to the 1-D non-steady Fourier equation to determine heat transfer coefficients and adiabatic wall temperatures. A fourth method uses regression analysis to calculate detailed heat transfer coefficients for a quasi-steady state condition using a thin-foil heater on the tip surface. The fifth method uses the infrared camera to measure the adiabatic wall temperature surface distribution of a blade tip after a quasi-steady state condition is present. Finally, the sixth method employs thin-film gauges to measure surface temperature histories at four discreet blade tip locations. With this approach, heat flux reconstruction is used to calculate the transient heat transfer coefficients and adiabatic wall temperatures. Overall, the present study shows that the infrared thermography technique with heat flux reconstruction using the Impulse method, is the most accurate and reliable method to obtain detailed, spatially-resolved heat transfer coefficients and adiabatic wall temperatures on a turbine blade tip in a linear cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call