Abstract
This paper proposes a simultaneous wireless information and power transfer (SWIPT) energy-harvesting relay jamming based mixed RF/FSO system, and studies its security performance optimization in the presence of an eavesdropper. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga(M) turbulence, respectively. A two-hop decode-and-forward (DF) relay is presented in the system, and the effect of pointing errors is considered. The presence of a nearby single antenna eavesdropper that attempts to eavesdrop on the transmission is also modeled. In order to prevent eavesdropping, the relay introduces the SWIPT structure to control information delivery and wireless energy recharging. The closed expressions of secrecy outage probability (SOP) and average secrecy capacity (ASC) of the mixed RF/FSO system are derived for the above system model. In addition, the closed-form expression of the asymptotic results for SOP and ASC are derived when signal-to-noise ratios at relay and legitimate destinations tend to infinity. The correctness of these expressions is verified using the Monte Carlo method. The influence of various key factors on the safety performance of the system is analyzed by simulations. The results show that the safety performance of the system is considerably improved under good weather conditions as well as by increasing the signal-interference noise ratio, number of interferer antennas, power distribution factor and energy conversion efficiency. This study provides a new system structure and a good theoretical basis for evaluating the physical layer security performance of the mixed RF/FSO system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have