Abstract

The problems of the construction of asymptotically distribution free goodness-of-fit tests for two diffusion processes are considered. The null hypothesis is composite parametric. All tests are based on the score-function processes, where the unknown parameter is replaced by the maximum likelihood estimators. We show that a special change of time transforms the limit score-function processes into the Brownian bridge. This property allows us to construct asymptotically distribution-free tests for dynamical systems with small noise and ergodic diffusion processes. The proposed tests are in some sense universal. We discuss the possibilities of the construction of asymptotically distribution free tests for inhomogeneous Poisson processes and nonlinear AR time series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.