Abstract
LetR be a ring. For the setF of all nonzero ideals ofR, we introduce an equivalence relation inF as follows: For idealsI andJ, I∼J if and only ifV R (I)=V R(J), whereV R() is the centralizer inR. LetI R=F/∼. Then we can see thatn(I R), the cardinality ofI R, is 1 if and only ifR is either a prime ring or a commutative ring (Theorem 1.1). An idealI ofR is said to be a commutator ideal ifI is generated by{st−ts; s∈S, t∈T} for subsetS andT ofR, andR is said to be a ring with (N) if any commutator ideal contains no nonzero nilpotent ideals. Then we have the following main theorem: LetR be a ring with (N). Thenn(I R) is finite if and only ifR is isomorphic to an irredundant subdirect sum ofS⊕Z whereS is a finite direct sum of non commutative prime rings andZ is a commutative ring (Theorem 2.1). Finally, we show that the existence of a ringR such thatn(I R)=m for any given natural numberm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.