Abstract

This article applies and investigates a number of logistic ridge regression (RR) parameters that are estimable by using the maximum likelihood (ML) method. By conducting an extensive Monte Carlo study, the performances of ML and logistic RR are investigated in the presence of multicollinearity and under different conditions. The simulation study evaluates a number of methods of estimating the RR parameter k that has recently been developed for use in linear regression analysis. The results from the simulation study show that there is at least one RR estimator that has a lower mean squared error (MSE) than the ML method for all the different evaluated situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.