Abstract

In this paper, we study the restricted cohomology of Lie algebras of semisimple and simply connected algebraic groups in positive characteristics with coefficients in simple restricted modules and their applications in studying the connections between these cohomology with the corresponding ordinary cohomology and cohomology of algebraic groups. Let G be a semisimple and simply connected algebraic group G over an algebraically closed field of characteristic p>h, where h is a Coxeter number. Denote the first Frobenius kernel and Lie algebra of G by G1 and g, respectively. First, we calculate the restricted cohomology of g with coefficients in simple modules for two families of restricted simple modules. Since in the restricted region the restricted cohomology of g is equivalent to the corresponding cohomology of G1, we describe them as the cohomology of G1 in terms of the cohomology for G1 with coefficients in dual Weyl modules. Then, we give a necessary and sufficient condition for the isomorphisms Hn(G1,V)≅Hn(G,V) and Hn(g,V)≅Hn(G,V), and a necessary condition for the isomorphism Hn(g,V)≅Hn(G1,V), where V is a simple module with highest restricted weight. Using these results, we obtain all non-trivial isomorphisms between the cohomology of G, G1, and g with coefficients in the considered simple modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.