Abstract

Depsipeptides are biologically active peptide derivatives that possess a high therapeutic interest. The development of depsipeptide mimics characterized by a chemical diversity could lead to compounds with enhanced features and activity. In this work, an on-resin multicomponent procedure for the synthesis of amidino depsipeptide mimics is described. This approach exploits a metal-free 1,3-dipolar cycloaddition of cyclopentanone-proline enamines and sulfonylazides. In this reaction, the obtained primary cycloadduct undergoes a ring opening and molecular rearrangement giving access to a linear sulfonyl amidine functionalized with both a peptide chain and a diazoalkane. The so-obtained diazo function "one pot" reacts with the carboxylic group of N-Fmoc-protected amino acids leading to amidino depsipeptide mimics possessing a C4 aliphatic chain. An important advantage of this procedure is the possibility to easily obtain amidino-functionalized derivatives that are proteolytically stable peptide bond bioisosteres. Moreover, the conformational freedom given by the alkyl chain could promote the obtainment of cyclic depsipeptide with a stabilized secondary structure as demonstrated with both in silico calculations and experimental conformational studies. Finally, labeled depsipeptide mimics can be also synthesized using a fluorescent sulfonylazide in the multicomponent reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.