Abstract

Let Γ be the fundamental group of the complement of a K(Γ, 1) hyperplane arrangement (such as Artin's pure braid group) or more generally a homologically toroidal group as defined below. The triviality of bundles arising from orthogonal representations of Γ is characterized completely as follows. An orthogonal representation gives rise to a trivial bundle if and only if the representation factors through the spinor groups. Furthermore, the subgroup of elements in the complex K-theory of BΓ which arises from complex unitary representations of Γ is shown to be trivial. In the case of real K-theory, the subgroup of elements which arises from real orthogonal representations of Γ is an elementary abelian 2-group, which is characterized completely in terms of the first two Stiefel-Whitney classes of the representation. In addition, quadratic relations in the cohomology algebra of the pure braid groups which correspond precisely to the Jacobi identity for certain choices of Poisson algebras are shown to give the existence of certain homomorphisms from the pure braid group to generalized Heisenberg groups. These cohomology relations correspond to non-trivial Spin representations of the pure braid groups which give rise to trivial bundles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call