Abstract

We construct the relative log de Rham-Witt complex. This is a generalization of the relative de Rham-Witt complex of Langer-Zink to log schemes. We prove the comparison theorem between the hypercohomology of the log de Rham-Witt complex and the relative log crystalline cohomology in certain cases. We construct the $p$-adic weight spectral sequence for relative proper strict semistable log schemes. When the base log scheme is a log point, We show it degenerates at $E_2$ after tensoring with the fraction field of the Witt ring. We also extend the definition of the overconvergent de Rham-Witt complex of Davis-Langer-Zink to log schemes $(X,D)$ associated with smooth schemes with simple normal crossing divisor over a perfect field. Finally, we compare its hypercohomology with the rigid cohomology of $X \setminus D$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.