Abstract

Consider a weak instationary solution \(u\) of the Navier–Stokes equations in a domain \(\varOmega \subsetneq \mathbb {R}^3\) with Dirichlet boundary data \(u=0\) on \(\partial \Omega \), i.e., \(u\) solves the Navier–Stokes system in the sense of distributions and $$\begin{aligned} u \in L^\infty \left( 0,T;L^2(\varOmega )\right) \cap L^2 \left( 0,T;W^{1,2}_0(\varOmega )\right) . \end{aligned}$$ Since the pioneering work of J. Leray 1933/34 it is an open problem whether weak solutions are unique and smooth. The main step—to nowadays knowledge—is to show that the given weak solution is a strong one in the sense of J. Serrin, i.e., \(u \in L^s \left( 0,T;L^q(\varOmega )\right) \) where \(s>2, q>3\) and \(\frac{2}{s}+ \frac{3}{q}=1\). This review reports on recent progress in this important problem, considering this issue locally on an initial interval \([0,T')\), \(T'<T\), i.e., the problem of optimal initial values \(u(0)\), globally on \([0,T)\), and from a one-sided point of view \(u \in L^s \left( T'-\varepsilon ,T';L^q(\varOmega )\right) \) or \(u \in L^s\left( T',T'+\varepsilon ;L^q(\varOmega )\right) \). Further topics deal with the energy (in-)equality, uniqueness of weak solutions, blow-up phenomena and the analysis in critical spaces for the whole space case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.