Abstract

<p style='text-indent:20px;'>In this work, we consider the forced generalized Burgers-Huxley equation and establish the existence and uniqueness of a global weak solution using a Faedo-Galerkin approximation method. Under smoothness assumptions on the initial data and external forcing, we also obtain further regularity results of weak solutions. Taking external forcing to be zero, a positivity result as well as a bound on the classical solution are also established. Furthermore, we examine the long-term behavior of solutions of the generalized Burgers-Huxley equations. We first establish the existence of absorbing balls in appropriate spaces for the semigroup associated with the solutions and then show the existence of a global attractor for the system. The inviscid limits of the Burgers-Huxley equations to the Burgers as well as Huxley equations are also discussed. Next, we consider the stationary Burgers-Huxley equation and establish the existence and uniqueness of weak solution by using a Faedo-Galerkin approximation technique and compactness arguments. Then, we discuss about the exponential stability of stationary solutions. Concerning numerical studies, we first derive error estimates for the semidiscrete Galerkin approximation. Finally, we present two computational examples to show the convergence numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.