Abstract

In this paper, we discuss the Cauchy problem for the compressible isentropic Euler-Boltzmann equations with vacuum in radiation hydrodynamics. We establish the existence of a unique local regular solution with vacuum by the theory of quasi-linear symmetric hyperbolic systems and some techniques dealing with the complexity caused by the coupling between fluid and radiation field under some physical assumptions for the radiation quantities. Moreover, it is interesting to show the non-global existence of regular solutions caused by the effect of vacuum for polytropic gases with adiabatic exponent $1<\gamma\leq 3$ via some observations on the propagation of the radiation field. Compared with [11][15][20], some new initial conditions that will lead to the finite time blow-up for classical solutions have been introduced. These blow-up results tell us that the radiation effect on the fluid is not strong enough to prevent the formation of singularities caused by the appearance of vacuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.