Abstract

In this paper the static deflection and pull-in instability of electrostatically actuated microcantilevers is investigated based on the strain gradient theory. The equation of motion and boundary conditions are derived using Hamilton’s principle and solved numerically. It is shown that the strain gradient theory predicts size dependent normalized static deflection and pull-in voltage for the microbeam while according to the classical theory the normalized behavior of the microbeam is independent of its size. The results of strain gradient theory are compared with those of classical and modified couple stress theories and also experimental observations. According to this comparison, the classical theory underestimates the stiffness of the microbeam and there is a gap between the results predicted by the classical theory and those observed in experiment. It is demonstrated that this gap can be reduced when utilizing the strain gradient theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.