Abstract

A differential turbulence model is used to predict the decay behavior of turbulent buoyant jets in a uniform environment at rest. The turbulent stresses and heat fluxes are modeled by the algebraic expressions while the differential transport equations are solved for the kinetic energy of turbulence, k, the rate of dissipation of turbulence kinetic energy, ε, and the fluctuating temperature T′2. The numerical result correlated with a unified scaling law was shown to fall into a single curve for the flows beyond the zone of flow establishment. The flow characteristics are then classified into a non-buoyant region, an intermediate region and a plume region. The predicted results show that the buoyant jets is accelerated in the zone of flow establishment. Equations for decay of velocity, density, and turbulent quantities are given from the non-buoyant region to the plume region for both plane and round buoyant jets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.