Abstract

In this short note we study special unsteady flows of a fluid whose viscosity depends on both the pressure and the shear rate. Here we consider an interesting dependence of the viscosity on the pressure and the shear rate; a power-law of the shear rate wherein the exponent depends on the pressure. The problem is important from the perspective of fluid dynamics in that we obtain solutions to a technologically relevant problem, and also from the point of view of mathematics as the analysis of the problem rests on the theory of spaces with variable exponents. We use the theory to prove the existence of solutions to generalizations of Stokes’ first and second problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.