Abstract

Тhe paper describes a technique of topological optimization of osteosynthesis plates used for internal fixation of bone fractures. The proposed technique is based on the application of the density method and the commercially available COMSOL Multiphysics software intended for finite element modeling. A comparative analysis of the characteristics (axial stiffness, volume and maximum von Mises stress) is presented for initial design of the plate and two optimized variants of the design. It has been established that the optimized variants provide a reduction in the plate volume by 49–54 %. In this case, the axial stiffness decreases by 43–53 %, which is a positive effect in terms of minimizing the effect of stress shielding. The optimized variants of the design possess close values of axial stiffness and maximum von Mises stress, however, in one of them, deflection of the axial segments occurs, resulting in an increase in the total strain energy, which is used as an objective function during optimization. In the variant 2 of the design, the deflection of the longitudinal segments of the plate is eliminated due to the presence of a transverse bridge between them, and the total strain energy takes on a lower value. The variant of the design without a bridge should be additionally studied, since shear stresses resulting from the contact interaction of the longitudinal segments of the plate with the bone can have a positive effect on regeneration of the bone tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call