Abstract

Some properties and an algorithm for solving systems of multivariate polynomial equations over finite fields are presented. It is then shown how formulas of propositional logics (particularly of finite-valued logics and paraconsistent logics) can be translated into polynomials over finite fields in such a way that several logic problems are expressed in terms of algebraic problems. Consequently, algebraic properties and algorithms can be used to solve the algebraically-represented logic problems. The methods described herein combine and generalise those of various previous works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.