Abstract

We prove that rational data of bounded input length are uniformly distributed (in the classical sense of H. Weyl, in [42]) with respect to the probability distribution of condition numbers of numerical analysis. We deal both with condition numbers of linear algebra and with condition numbers for systems of multivariate polynomial equations. For instance, we prove that for a randomly chosen n\times n rational matrix M of bit length O(n 4 log n) + log w , the condition number k(M) satisfies k(M) ≤ w n 5/2 with probability at least 1-2w -1 . Similar estimates are established for the condition number μ_ norm of M. Shub and S. Smale when applied to systems of multivariate homogeneous polynomial equations of bounded input length. Finally, we apply these techniques to estimate the probability distribution of the precision (number of bits of the denominator) required to write approximate zeros of systems of multivariate polynomial equations of bounded input length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.