Abstract
In this paper we study the existence, uniqueness and stability of periodic solutions for a two-neuron network system with or without external inputs. The system consists of two identical neurons, each possessing nonlinear feedback and connected to the other neuron via a nonlinear sigmoidal activation function. In the absence of external inputs but with appropriate conditions on the feedback and connection strengths, we prove the existence, uniqueness and stability of periodic solutions by using the Poincaré–Bendixson theorem together with Dulac's criterion. On the other hand, for the system with periodic external inputs, combining the techniques of the Liapunov function with the contraction mapping theorem, we propose some sufficient conditions for establishing the existence, uniqueness and exponential stability of the periodic solutions. Some numerical results are also provided to demonstrate the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.