Abstract
Time-periodic perturbations of an asymmetric Duffing–Van-der-Pol equation close to an integrable equation with a homoclinic "figure-eight" of a saddle are considered. The behavior of solutions outside the neighborhood of "figure-eight" is studied analytically. The problem of limit cycles for an autonomous equation is solved and resonance zones for a nonautonomous equation are analyzed. The behavior of the separatrices of a fixed saddle point of the Poincaré map in the small neighborhood of the unperturbed "figure-eight" is ascertained. The results obtained are illustrated by numerical computations.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have