Abstract
The equations describing parametric instabilities of a finite-amplitude internal gravity wave in an inviscid Boussinesq fluid are studied numerically. By improving the numerical approach, discarding the concept of spurious roots and considering the whole range of directions of the Floquet vector, Mied's work is generalized to its full complexity. In the limit of large disturbance wavenumbers, the unstable disturbances propagate in the directions of the two infinite curve segments of the related resonant-interaction diagram. They can therefore be classified into two families which are characterized by special propagation directions. At high wavenumbers the maximum growth rates converge to limits which do not depend on the direction of the Floquet vector. The limits are different for both families; the disturbance waves propagating at the smaller angle to the basic gravity wave grow at the larger rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.