Abstract
Bone fracture plates are used to stabilize fractures while allowing for adequate compressive force on the fracture ends. Yet the high stiffness of conventional bone plates significantly reduces compression at the fracture site, and can lead to subsequent bone loss upon healing. Fibre-reinforced composite bone plates have been introduced to address this drawback. However, no studies have optimized their configurations to fulfill the requirements of proper healing. In the present study, classical laminate theory and the finite element method were employed for optimization of a composite bone plate. A hybrid composite made of carbon fibre/epoxy with a flax/epoxy core, which was introduced previously, was optimized by varying the laminate stacking sequence and the contribution of each material, in order to minimize the axial stiffness and maximize the torsional stiffness for a given range of bending stiffness. The initial 14×414 possible configurations were reduced to 13 after applying various design criteria. A comprehensive finite element model, validated against a previous experimental study, was used to evaluate the mechanical performance of each composite configuration in terms of its fracture stability, load sharing, and strength in transverse and oblique Vancouver B1 fracture configurations at immediately post-operative, post-operative, and healed bone stages. It was found that a carbon fibre/epoxy plate with an axial stiffness of 4.6MN, and bending and torsional stiffness of 13 and 14N·m2, respectively, showed an overall superiority compared with other laminate configurations. It increased the compressive force at the fracture site up to 14% when compared to a conventional metallic plate, and maintained fracture stability by ensuring the fracture fragments’ relative motions were comparable to those found during metallic plate fixation. The healed stage results revealed that implantation of the titanium plate caused a 40.3% reduction in bone stiffness, while the composite plate lowered the stiffness by 32.9% as compared to the intact femur. This study proposed a number of guidelines for the design of composite bone plates. The findings suggest that a composite bone plate could be customized to allow for moderate compressive force on the fracture ends, while remaining relatively rigid in bending and torsion and strong enough to withstand external loads when a fracture gap is present. The results indicate that the proposed composite bone plate could be a potential candidate for bone fracture plate applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.