Abstract
In this paper we propose a new approach to the construction of quadrature formulas of interpolation rational type on an interval. In the introduction, a brief analysis of the results on the topic of the research is carried out. Most attention is paid to the works of mathematicians of the Belarusian school on approximation theory – Gauss, Lobatto, and Radau quadrature formulas with nodes at the zeros of the rational Chebyshev – Markov fractions. Rational fractions on the segment, generalizing the classical orthogonal Jacobi polynomials with one weight, are defined, and some of their properties are described. One of the main results of this paper consists in constructing quadrature formulas with nodes at zeros of the introduced rational fractions, calculating their coefficients in an explicit form, and estimating the remainder. This result is preceded by some auxiliary statements describing the properties of special rational functions. Classical methods of mathematical analysis, approximation theory, and the theory of functions of a complex variable are used for proof. In the conclusion a numerical analysis of the efficiency of the constructed quadrature formulas is carried out. Meanwhile, the choice of the parameters on which the nodes of the quadrature formulas depend is made in several standard ways. The obtained results can be applied for further research of rational quadrature formulas, as well as in numerical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.