Classical interpolatory or Gaussian quadrature formulas are exact on sets of polynomials. The Szegő quadrature formulas are the analogs for quadrature on the complex unit circle. Here the formulas are exact on sets of Laurent polynomials. In this paper we consider generalizations of these ideas, where the (Laurent) polynomials are replaced by rational functions that have prescribed poles. These quadrature formulas are closely related to certain multipoint rational approximants of Cauchy or Riesz–Herglotz transforms of a (positive or general complex) measure. We consider the construction and properties of these approximants and the corresponding quadrature formulas as well as the convergence and rate of convergence.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call