Abstract
This paper proposes a prediction engine designed for non-dedicated clusters, which is able to estimate the turnaround time for parallel applications, even in the presence of serial workload of the workstation owner. The prediction engine can be configured to work with three different estimation kernels: a Historical kernel, a Simulation kernel based on analytical models and an integration of both, named Hybrid kernel. These estimation proposals were integrated into a scheduling system, named CISNE, which can be executed in an on-line or off-line mode. The accuracy of the proposed estimation methods was evaluated in relation to different job scheduling policies in a real and a simulated cluster environment. In both environments, we observed that the Hybrid system gives the best results because it combines the ability of a simulation engine to capture the dynamism of a non-dedicated environment together with the accuracy of the historical methods to estimate the application runtime considering the state of the resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.