Abstract
In 1978 J. Palis invented continuum topologically non-conjugate systems in a neighbourhood of a system with a heteroclinic contact; in other words, he invented so-called moduli. W. de Melo and С. van Strien in 1987 described a diffeomorphism class with a finite number of moduli. They discovered that a chain of saddles taking part in the heteroclinic contact of such diffeomorphism includes not more than three saddles. Surprisingly, such effect does not happen in flows. Here we consider gradient flows of the height function for an orientable surface of genus g>0. Such flows have a chain of 2g saddles. We found that the number of moduli for such flows is 2g−1 which is the straight consequence of the sufficient topological conjugacy conditions for such systems given in our paper. A complete topological equivalence invariant for such systems is four-colour graph carrying the information about its cells relative position. Equipping the graph's edges with the analytical parameters --- moduli, connected with the saddle connections, gives the sufficient conditions of the flows topological conjugacy.
Highlights
W. de Melo and Ñ. van Strien in 1987 described a dieomorphism class with a nite number of moduli. They discovered that a chain of saddles taking part in the heteroclinic contact of such dieomorphism includes not more than three saddles
We consider gradient ows of the height function for an orientable surface of genus g > 0
We found that the number of moduli for such ows is 2g − 1 which is the straight consequence of the sucient topological conjugacy conditions for such systems given in our paper
Summary
Òîïîëîãè÷åñêàÿ ñîïðÿæåííîñòü äâóõ äèíàìè÷åñêèõ ñèñòåì îçíà÷àåò ñóùåñòâîâàíèå ãîìåîìîðôèçìà, ïåðåâîäÿùåãî òðàåêòîðèè îäíîé ñèñòåìû â òðàåêòîðèè äðóãîé ñ ñîõðàíåíèåì íàïðàâëåíèÿ è âðåìåíè äâèæåíèÿ. Äëÿ íåïðåðûâíûõ ñèñòåì (ïîòîêîâ) ýòî îòíîøåíèå îòëè÷àåòñÿ îò òîïîëîãè÷åñêîé ýêâèâàëåíòíîñòè, êîòîðàÿ íå òðåáóåò ñîõðàíåíèÿ âðåìåíè. Æ. Ïàëèñîì [1] áûëî îòêðûòî íàëè÷èå êîíòèíóóìà òîïîëîãè÷åñêè íå ñîïðÿæåííûõ äèíàìè÷åñêèõ ñèñòåì â îêðåñòíîñòè ñèñòåìû ñ ãåòåðîêëèíè÷åñêèì êàñàíèåì íà ïîâåðõíîñòè. Èìåííî îí ðàññìîòðåë îêðåñòíîñòü îðáèòû ãåòåðîêëèíè÷åñêîãî êàñàíèÿ è ïîêàçàë, ÷òî äëÿ òîïîëîãè÷åñêîé ñîïðÿæåííîñòè ñèñòåì â äâóõ òàêèõ îêðåñòíîñòÿõ íåîáõîäèìî ñîâïàäåíèå ïàðàìåòðîâ, âûðàæàþùèõñÿ ÷åðåç ñîáñòâåííûå çíà÷åíèÿ ñåäåë, ñåïàðàòðèñû êîòîðûõ êàñàþòñÿ. Ëþáàÿ îêðåñòíîñòü ñèñòåìû ñ êàñàíèåì â ïðîñòðàíñòâå äèíàìè÷åñêèõ ñèñòåì ñîäåðæèò áåñêîíå÷íîå ìíîæåñòâî ïîïàðíî ðàçëè÷íûõ êëàññîâ òîïîëîãè÷åñêîé ñîïðÿæåííîñòè. Ñ ïîìîùüþ êîòîðûõ îïèñûâàþòñÿ êëàññû â íåêîòîðîé òàêîé îêðåñòíîñòè, íàçûâàþòñÿ ìîäóëÿìè òîïîëîãè÷åñêîé ñîïðÿæåííîñòè. Óäèâèòåëüíûì îáðàçîì ïîäîáíîãî ýôôåêòà íå îáíàðóæèâàåòñÿ äëÿ íåïðåðûâíûõ äèíàìè÷åñêèõ ñèñòåì.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have