Abstract

The Internet of Things (IoT) is expected to foster the development of 5G wireless networks and requires the efficient support for a large number of simultaneous short message communications. To address these challenges, some existing works utilize new waveform and multiuser superposition transmission schemes to improve the capacity of IoT communication. In this paper, we will investigate the spatial degree of freedom of IoT devices based on their distribution, then extend the multiuser shared access (MUSA) which is one of the typical MUST schemes to spatial domain, and propose two novel schemes, that is, the preconfigured access scheme and the joint spatial and code domain scheduling scheme, to enhance IoT communication. The results indicate that the proposed schemes can reduce the collision rate dramatically during the IoT random access procedure and improve the performance of IoT communication obviously. Based on the simulation results, it is also shown that the proposed scheduling scheme can achieve the similar performance to the corresponding brute-force scheduling but with lower complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.