Abstract

Abstract For non-spinning, charged (Reissner–Nordström) black holes, the particles with an opposite sign of charge with respect to that of the black hole will be pulled into the black hole by the extra electromagnetic force. Such a hole will be quickly neutralized so that there should not exist significantly charged, non-spinning black holes in the universe. The case of spinning, charged (Kerr–Newmann, KN) black holes is more complicated. For a given initial position and initial velocity of the particle, an oppositely charged particle does not always more easily fall into the black hole than a neutral particle. The possible existence of a magnetosphere further complicate the picture. One therefore cannot straightforwardly conclude that a charged spinning black hole will be neutralized. In this paper, we make the first step to investigate the neutralization of KN black holes without introducing a magnetosphere. We track the particle trajectories under the influence of the curved space–time and the electromagnetic field carried by the spinning, charged black hole. A statistical method is used to investigate the neutralization problem. We find a universal dependence of the falling probability into the black hole on the charge of the test particle, with the oppositely charged particles having a higher probability of falling. We therefore conclude that charged, spinning black holes without a magnetosphere should be quickly neutralized, consistent with people’s intuition. The neutralization problem of KN black holes with a corotating force-free magnetosphere is subject to further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.