Abstract

The goals of this paper are to prove a near-martingale optional stopping theorem and establish solvability and large deviations for a class of anticipating linear stochastic differential equations. For a class of anticipating linear stochastic differential equations, we prove the existence and uniqueness of solutions using two approaches: (1) Ayed–Kuo differential formula using an ansatz, and (2) a braiding technique by interpreting the integral in the Skorokhod sense. We establish a Freidlin–Wentzell type large deviations result for the solution of such equations. In addition, we prove large deviation results for small noise where the initial conditions are random.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.