Abstract
Dummett's logic LC is intuitionistic logic extended with Dummett's axiom: for every two statements the first implies the second or the second implies the first. We present a natural deduction and a Curry-Howard correspondence for first-order and second-order Dummett's logic. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for representing parallel computations and communication between them, and from the viewpoint of logic, Dummett's axiom. We prove that our typed calculus is normalizing and show that proof terms for existentially quantified formulas reduce to a list of individual terms forming an Herbrand disjunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.