Abstract
Whereas string diagrams for strict monoidal categories are well understood, and have found application in several fields of Computer Science, graphical formalisms for non-strict monoidal categories are far less studied. In this paper, we provide a presentation by generators and relations of string diagrams for non-strict monoidal categories, and show how this construction can handle applications in domains such as digital circuits and programming languages. We prove the correctness of our construction, which yields a novel proof of Mac Lane's strictness theorem. This in turn leads to an elementary graphical proof of Mac Lane's coherence theorem, and in particular allows for the inductive construction of the canonical isomorphisms in a monoidal category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.