Abstract
In this note we consider splitting methods based on linear multistep methods and stabilizing corrections. To enhance the stability of the methods, we employ an idea of Bruno and Cubillos [O. P. Bruno and M. Cubillos, J. Comput. Phys., 307 (2016), pp. 476--495], who combine a high-order extrapolation formula for the explicit term with a formula of one order lower for the implicit terms. Several examples of the obtained multistep stabilizing correction methods are presented, and results on linear stability and convergence are derived. The methods are tested in the application to the well-known Heston model arising in financial mathematics and are found to be competitive with well-established one-step splitting methods from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.