Abstract

This article explores integral inequalities within the framework of local fractional calculus, focusing on the class of generalized ‐convex functions. It introduces a novel extension of the Hermite‐Hadamard inequality and derives numerous fractal inequalities through a novel multiparameterized identity. The primary aim is to generalize existing inequalities, highlighting that previously established results can be obtained by setting specific parameters within the main inequalities. The validity of the derived results is demonstrated through an illustrative example, accompanied by 2D and 3D graphical representations. Lastly, the paper discusses potential practical applications of these findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.